Prečo užívať nutraceutikum Sulforafan EXTRA dlhodobo?

Je fakt, že v modernom svete sa nemôžeme vyhnúť stálemu účinku toxických látok. Vzhľadom na ich značný potenciál poškodzovať naše zdravie je dôležité, aby sme podnikli kroky na zmiernenie ich nežiaduceho vplyvu, a to konzumáciou protizápalovej stravy, bohatej na živiny, pravidelným cvičením, dostatkom spánku, znížením nášho kontaktu s enviromentálnymi toxínmi, atď. 

Ukázalo sa však, že to nestačí. Je potrebné užívať i ďalšie živiny, ktoré sú schopné regulovať  vnútorné detoxikačné systémy nášho tela, zlepšiť stav hladiny antioxidačného enzýmu glutatiónu a predovšetkým aktivovať super regulačný gén Nrf2. To všetko, a ešte oveľa viac, dokáže fytochemikália sulforafan, ktorého najviac obsahuje brokolica. Sám „jednou ranou“ rieši neuveriteľnú paletu zdravotných problémov. Mnohí pacienti, ktorí majú s užívaním sulforafanu osobné skúsenosti, ho označujú za zázračný liek. Väčšina ľudí zaznamená účinky sulforafanu do dvoch dní až do dvoch týždňov. Jeden z hlavných účinkov, ktorý si ľudia zvyknú okamžite všimnúť, je citeľné zníženie chronického zápalu alebo bolesti. A to sa dlhším užívaním sulforafanu ešte výraznejšie zlepšuje, keď sa regulačný gén Nrf2 stáva pod jeho vplyvom v závislosti od zdravotného stavu jednotlivých orgánov nášho tela aktívnejším. Sulforafan je stále horúcou témou a každá nová štúdia, ktorá vyjde, dokazuje prečo. Čím viac vedci túto molekulu skúmajú, tým viac sú ohromení jej potenciálom predchádzať chorobám, zvrátiť ich priebeh a dramaticky zlepšiť naše zdravie a pohodu. Konštatujú, že nie je to ,samozrejme, zázračný liek, ale je to jedna z najsľubnejších terapeutických živín, s ktorými sa doteraz stretli.

Existuje viac ako 3000 publikácií, opisujúcich účinnosť a/alebo základné mechanizmy účinku sulforafanu.

Vedci zistili, že sila sulforafanu spočíva v mnohostrannosti jeho účinku s množstvom výhod. Podporuje imunitné funkcie, napríklad tým, že zvyšuje tvorbou a lytickú aktivitu NK buniek, blokuje zápaly tým, že potláča NF-kB kľúčový regulátor zápalu, čím sa zabráni tvorbe zápalových enzýmov (COX-2 a iNOS). Podporuje detoxikáciu, najmä dôležitú fázu dva, ktorá je kritická. Tým sa odlišuje  od väčšiny detoxikačných výživových doplnkov, ako je napríklad vitamín C, ktorý podporuje len prvú fázu a preto nie je schopný chrániť nás pred všetkými mutagénnymi a karcinogénnymi látkami. Sulforafan to dokáže tým, že aktivuje NQO1, čo je enzým fázy dva, nevyhnutný pri zneškodnení mnohých toxínov, oxidovaných živín a rôznych škodlivých metabolitov.

Sulforafan - ako nepriamy superantioxidant - nás chráni pred oxidačným stresom, ktorý je súčasťou takmer všetkých chronických ochorení a tiež procesu starnutia. Má protirakovinové účinky tým, že prostredníctvom Nrf2  „zapína“ gény, ktoré bránia vzniku rakoviny a „vypína“ tie, ktoré pomáhajú pri jej vzniku a rozširovaní. Má priaznivé účinky pri srdcovocievnych ochoreniach tým, že podporuje a zvyšuje tvorbu srdce ochraňujúceho proteínu tioredoxínu, ktorý zohráva významnú úlohu pri ochrane srdca pred kyslíkovými radikálmi. Indukuje činnosť antioxidačných génov NrF2 produkujúcich proteíny, ktoré chránia výstelkové bunky tepien pred oxidačným stresom, a tak zabraňujú ateroskleróze. Ďalej má antivírusové a antibakteriálne účinky (vrátane Helicobacter pylori).  Chráni a obnovuje funkciu mozgu tým, že ľahko prechádza cez krvno-mozgovú bariéru, čo mu umožňuje vyvolať antidepresívne, protiúzkostné účinky a mnoho ďalších zdravotných výhod. Ako je možné, že sulforafan má také široké spektrum účinku? Odpoveď našli vedci, keď zistili, že primárnym mechanizmom ochranného a liečebného potenciálu sulforafanu je indukcia super regulačného génu Nrf2.

V čom je sulforafan jedinečný? 

Je najúčinnejší aktivátor Nrf2 vďaka tomu, že je malou molekulou schopnou zlučovať sa s tukmi. Má absolútnu biologickú dostupnosť okolo 80%, kým ostatné známe aktivátory (resveratrol, symilarin, kurkumín) sú veľké hydrofilné molekuly a ich biologická dostupnosť je len 1 – 8%. 

Komu sa odporúča dlhodobo užívať sulforafan? 

Každému, kto mal rakovinu, má v rodinnej anamnéze rakovinu alebo kto chce byť proaktívny pri znižovaní rizika rakoviny. A všetkým, ktorí majú zápalovú alebo autoimunitnú chorobu, ako je artritída, syndróm dráždivého čreva, nadváha, obezita, vysoká hladina cukru v krvi, inzulínová rezistencia, alebo majú akýkoľvek druh chronického zápalu alebo bolesti. Môže to byť dokonca akútne zranenie chrbta alebo chronické zranenie, ktoré sa v nás „rozhorí“. Pacientom s mozgovou hmlou, problémami s pamäťou, problémami so zapamätaním slov alebo inými kognitívnymi problémami, osobám s akýmkoľvek druhom depresie, úzkosti a trpiacim na vážnejšie duševné choroby ako napríklad  schizofrénia. Pacientom s neurodegeneratívnymi stavmi, ako je demencia, Alzheimerova choroba, Parkinsonova choroba, epilepsia atď. Aj deťom alebo dospelým s poruchou pozornosti/hyperaktivity, poruchami autistického spektra alebo inými poruchami správania. A nakoniec všetkým nad 60+, ktorí to myslia s dlhovekosťou a zdravým vážne.

Ako užívať sulforafan?

Ešte nie je určené dávkovanie, ale podľa doterajších skúseností:

Pri prevencii nepretržite aspoň 4 mesiace 1 dvojzložkovú kapsulu (glukorafanín+myrozináza) denne spolu s jedlom, potom urobiť  2 mesiace prestávku.                                                             

Pri liečbe nepretržite užívať 5 - 6 mesiacov 2 dvojzložkové kapsule denne (ráno a večer), potom prerušiť na mesiac (aj na dva, podľa stavu choroby).

Prof. RNDr. Katarína Horáková, DrSc.


Literatúra:

Alfieri Alessio, Srivastava Salil, Siow Richard C.M., Cash Diana, Modo Michel, Duchen Michael R., Fraser Paul A., Williams Steven C.R., Mann Giovanni E. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radical Biology and Medicine. 2013;65:1012–1022. 

Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin. J Funct Foods. 2014;7:67–76. 

Atwell Lauren L., Hsu Anna, Wong Carmen P., Stevens Jan F., Bella Deborah, Yu Tian-Wei, Pereira Clifford B., Löhr Christiane V., Christensen John Mark, Dashwood Roderick H., Williams David E., Shannon Jackilen, Ho Emily. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Molecular Nutrition & Food Research. 2015;59(3):424–433. 

Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C, et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol. 2013;57:82–95. 

Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr. 2016;3:24. 

Bhakkiyalakshmi E, Sireesh D, Rajaguru P, Paulmurugan R, Ramkumar KM. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol Res. 2015;91:104–114. 

Bheemreddy RM, Jeffery EH. The metabolic fate of purified glucoraphanin in F344 rats. J Agric Food Chem. 2007;55(8):2861–2866. 

Bones AM, Rossiter JT. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry. 2006;67(11):1053–1067. 

Bricker GV, Riedl KM, Ralston RA, Tober KL, Oberyszyn TM, Schwartz SJ. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Mol Nutr Food Res. 2014;58(10):1991–2000.

Brown AF, Yousef GG, Jeffery EH, Klein BP, Wallig MA, Kushad MM, Juvik JA. Glucosinolate profiles in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Soc Hortic Sci. 2002;127(5):807–813. 

Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome structure and assembly. J Mol Biol. 2017;429(22):3500–3524. 

Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem. 2000;275:39385–39393

Campisi J, di Fagagna F d A. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–740. 

Chapple SJ, Siow RC, Mann GE. Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol. 2012;44(8):1315–1320.  

Checker R, Gambhir L, Thoh M, Sharma D, Sandur SK. Sulforaphane, a naturally occurring isothiocyanate, exhibits anti-inflammatory effects by targeting GSK3β/Nrf-2 and NF-κB pathways in T cells. J Funct Foods. 2015;19:426–438. 

Childs BG, Durik M, Baker DJ, Van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–1435. 

Chondrogianni N, Gonos ES. Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp Gerontol. 2007;42(9):899–903. 

Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 2000;35(6–7):721–728. 

Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem. 2003;278:28026–28037

Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES. Overexpression of proteasome β5 subunit increases amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem. 2005;280:11840–11850. 

Chondrogianni N, Trougakos IP, Kletsas D, Chen QM, Gonos ES. Partial proteasome inhibition in human fibroblasts triggers accelerated M1 senescence or M2 crisis depending on p53 and Rb status. Aging Cell. 2008;7(5):717–732. 

Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev. 2015;23:37–55. 

Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 2015;29(2):611–622. 

Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med. 2015;71:303–320. 

Ciechanover A. The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J. 1998;17(24):7151–7160. 

Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Yamamoto M, Ho E. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res. 2011;28(12):3171–3179. 

Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH. Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr. 1985;41(1):32–36. doi: 10.1093/ajcn/41.1.32. 

Cramer JM, Jeffery EH. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer. 2011;63(2):196–201. 

Dai D-F, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan. 2014;3(1):6. 

Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol. 2015;218(1):59–70

Dashwood RH, Ho E. Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev. 2008;66:S36–S38. 

Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol. 2017;69:257–269. 

Dwivedi S, Rajasekar N, Hanif K, Nath C, Shukla R. Sulforaphane ameliorates okadaic acid-induced memory impairment in rats by activating the Nrf2/HO-1 antioxidant pathway. Mol Neurobiol. 2016;53(8):5310–5323. 

Fahey J, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol. 1999;37(9–10):973–979. 

Fishbein JC, Heilman JM (2018) Advances in molecular toxicology. Elsevier Science

Gabriel D, Roedl D, Gordon LB, Djabali K. Sulforaphane enhances progerin clearance in Hutchinson–Gilford progeria fibroblasts. Aging Cell. 2015;14(1):78–91

Gan N, Wu Y-C, Brunet M, Garrido C, Chung F-L, Dai C, Mi L. Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem. 2010;285(46):35528–35536

Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, et al. Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience. 2018;388:357–366. 

Ghawi SK, Methven L, Niranjan K. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba) Food Chem. 2013;138(2–3):1734–1741

Gordon LB, Rothman FG, López-Otín C, Misteli T. Progeria: a paradigm for translational medicine. Cell. 2014;156(3):400–407. 

Greco T, Shafer J, Fiskum G. Sulforaphane inhibits mitochondrial permeability transition and oxidative stress. Free Radic Biol Med. 2011;51(12):2164–2171.  

Grünwald S, Stellzig J, Adam IV, Weber K, Binger S, Boll M, Knorr E, Twyman RM, Vilcinskas A, Wenzel U. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr. 2013;8(5):439–448. 

Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64(5):503–508. 

Guo L, Yang R, Wang Z, Guo Q, Gu Z. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. J Funct Foods. 2014;9:70–77. 

Hanlon N, Coldham N, Gielbert A, Kuhnert N, Sauer MJ, King LJ, Ioannides C. Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br J Nutr. 2008;99(3):559–564. 

Hariton F, Xue M, Rabbani N, Fowler M, Thornalley PJ (2018) Sulforaphane delays fibroblast senescence by curbing cellular glucose uptake, increased glycolysis, and oxidative damage. Oxidative Med Cell Longev 

Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor-κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001;276:32008–32015. 

Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, et al. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. 

Hou T-T, Yang H-Y, Wang W, Wu Q-Q, Tian Y-R, Jia J-P (2018) Sulforaphane inhibits the generation of amyloid-β oligomer and promotes spatial learning and memory in Alzheimer’s disease (PS1V97L) transgenic mice. J Alzheimers Dis (preprint) 1–11

Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics. 2011;3(1):3. 

Hu R, Hebbar V, Kim B-R, Chen C, Winnik B, Buckley B, Soteropoulos P, Tolias P, Hart RP, Kong A-NT. In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat. J Pharmacol Exp Ther. 2004;310(1):263–271

Hu C, Eggler AL, Mesecar AD, Van Breemen RB. Modification of keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 2011;24(4):515–521. 

Hullar MA, Fu BC. Diet, the gut microbiome, and epigenetics. Cancer J (Sudbury, Mass.) 2014;20(3):170.

Hwang JS, Hwang JS, Chang I, Kim S. Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol Ser A Biol Med Sci. 2007;62(5):490–499. 

Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation. 2016;13(1):99. 

Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci. 2014;64(1):48–59. 

Jang M, Cho I-H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol Neurobiol. 2016;53(4):2619–2635. 

Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernández-Ruiz J, Cuadrado A. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal. 2011;14(12):2347–2360. 

Jhang KA, Park J-S, Kim H-S, Chong YH. Sulforaphane rescues amyloid-β peptide-mediated decrease in MerTK expression through its anti-inflammatory effect in human THP-1 macrophages. J Neuroinflammation. 2018;15(1):75. 

Jones DP. Redox theory of aging. Redox Biol. 2015;5:71–79. 

Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J. 2008;409(1):205–213. 

Kapeta S, Chondrogianni N, Gonos ES. Nuclear erythroid factor 2 (Nrf2) mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem. 2010;285(11):8171–8184

Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res. 2007;10(2):157–172

Kim J. .Pre-Clinical Neuroprotective Evidences and Plausible Mechanisms of Sulforaphane in Alzheimer's Disease. Int J Mol Sci. 2021 Mar 13;22(6):2929. doi: 10.3390/ijms22062929.

Kim J, Lee S, Choi BR, Yang H, Hwang Y, Park JHY, LaFerla FM, Han JS, Lee KW, Kim J. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol Nutr Food Res. 2017;61(2):1600194. 

Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7(1):14130. 

Kwak M-K, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol. 2003;23(23):8786–8794. 

Kwak M-K, Cho J-M, Huang B, Shin S, Kensler TW. Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Free Radic Biol Med. 2007;43(5):809–817. 

Lai R-H, Miller MJ, Jeffery E. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct. 2010;1(2):161–166. 

Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol a001651 

Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J. Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci. 2004;83(2):313–328. 

Li B, Cui W, Liu J, Li R, Liu Q, Xie X-H, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239–249. 

Li Y, Buckhaults P, Cui X, Tollefsbol TO. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals. Epigenomics. 2016;8(8):1019–1037.

Liddell J. Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants. 2017;6(3):65. 

Liu Y, Liu X, Zhang T, Luna C, Liton PB, Gonzalez P. Cytoprotective effects of proteasome β5 subunit overexpression in lens epithelial cells. Mol Vis. 2007;13:31

Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington's disease. J Neurochem. 2014;129(3):539–547. 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. 

Martinez-Villaluenga C, Peñas E, Ciska E, Piskula MK, Kozlowska H, Vidal-Valverde C, Frias J. Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chem. 2010;120(3):710–716. 

Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7):e11457.

Morroni F, Tarozzi A, Sita G, Bolondi C, Moraga JMZ, Cantelli-Forti G, Hrelia P. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson's disease. Neurotoxicology. 2013;36:63–71. 

Myzak MC, Karplus PA, Chung F-L, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004;64(16):5767–5774. 

Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc min mice. FASEB J. 2006;20(3):506–508.

Myzak MC, Ho E, Dashwood RH. Dietary agents as histone deacetylase inhibitors. Mol Carcinog. 2006;45(6):443–446. 

Nallasamy P, Si H, Babu PVA, Pan D, Fu Y, Brooke EA, et al. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway. J Nutr Biochem. 2014;25(8):824–833. 

Negi G, Kumar A, Sharma S, S. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res. 2011;8(4):294–304. 

Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspect Biol a000034 

Organization WH (2015) World report on ageing and health. World Health Organization

Papaevgeniou N, Chondrogianni N (2016) UPS activation in the battle against aging and aggregation-related diseases: an extended review. In: Proteostasis. Springer, pp 1–70 

Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, Chondrogianni N. 18α-Glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer’s disease progression in Caenorhabditis elegans and neuronal cultures. Antioxid Redox Signal. 2016;25(16):855–869. 

Park H-M, Kim J-A, Kwak M-K. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Arch Pharm Res. 2009;32(1):109–115. 

Paul B, Li Y, Tollefsbol T. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci. 2018;19(6):1754. 

Pennisi Manuela, Crupi Rosalia, Di Paola Rosanna, Ontario Maria Laura, Bella Rita, Calabrese Edward J., Crea Roberto, Cuzzocrea Salvatore, Calabrese Vittorio. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. Journal of Neuroscience Research. 2016;95(7):1360–1372. 

Petri Niclas, Tannergren Christer, Holst Birgit, Mellon Fred A., Bao Yongping, Plumb Geoff W., Bacon Jim, O'Leary Karen A., Kroon Paul A., Knutson Lars, Forsell Patrik, Eriksson Thomas, Lennernas Hans, Williamson Gary. ABSORPTION/METABOLISM OF SULFORAPHANE AND QUERCETIN, AND REGULATION OF PHASE II ENZYMES, IN HUMAN JEJUNUM IN VIVO. Drug Metabolism and Disposition. 2003;31(6):805–813

Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJ. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem. 2012;287(13):10021–10031. 

Pontius AT, Smith PW. An antiaging and regenerative medicine approach to optimal skin health. Facial Plast Surg. 2011;27(01):029–034. 

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607

Prestera T, Zhang Y, Spencer SR, Wilczak CA, Talalay P. The electrophile counterattack response: protection against neoplasia and toxicity. Adv Enzym Regul. 1993;33:281–296. 

Prochaska HJ, Santamaria AB, Talalay P. Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci. 1992;89(6):2394–2398

Pu Die, Zhao Yuxing, Chen Jinliang, sun Yue, Lv Ankang, Zhu Shiyu, Luo Cheng, Zhao Kexiang, Xiao Qian. Protective Effects of Sulforaphane on Cognitive Impairments and AD-like Lesions in Diabetic Mice are Associated with the Upregulation of Nrf2 Transcription Activity. Neuroscience. 2018;381:35–45. 

Royston KJ, Udayakumar N, Lewis K, Tollefsbol TO. A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. Int J Mol Sci. 2017;18(5):1092

Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res. 2014;119:111–114.  

Santín-Márquez, Roberto, Adriana Alarcón-Aguilar, Norma Edith López-Diazguerrero,et al.: Sulforaphane - role in aging and neurodegeneration. GeroScience. 2019 Oct; 41(5): 655–670. 

Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8(9):703–713. Shih VF-S, Tsui R, Caldwell A, Hoffmann A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 2011;21(1):86–102. 

Shirai Yumi, Fujita Yuko, Hashimoto Ryota, Ohi Kazutaka, Yamamori Hidenaga, Yasuda Yuka, Ishima Tamaki, Suganuma Hiroyuki, Ushida Yusuke, Takeda Masatoshi, Hashimoto Kenji. Dietary Intake of Sulforaphane-Rich Broccoli Sprout Extracts during Juvenile and Adolescence Can Prevent Phencyclidine-Induced Cognitive Deficits at Adulthood. PLOS ONE. 2015;10(6):e0127244

Silva-Palacios A, Ostolga-Chavarria M, Zazueta C, Königsberg M. Nrf2: molecular and epigenetic regulation during aging. Ageing Res Rev. 2018;47:31–40. 

Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558.

Sunkaria A, Bhardwaj S, Yadav A, Halder A, Sandhir R. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice. J Nutr Biochem. 2018;51:69–79. 

Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci. 1988;85(21):8261–8265. 

Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett. 1995;82:173–179. 


Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C, Dinkova-Kostova AT. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci. 2007;104(44):17500–17505. 

Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol. 2009;29(4):1095–1106

Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal. 2015;22(16):1382–1424

Townsend BE, Johnson RW. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice. Exp Gerontol. 2016;73:42–48. 

Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, … Mithen R (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(S2):S219–S219

Vilchez David, Morantte Ianessa, Liu Zheng, Douglas Peter M., Merkwirth Carsten, Rodrigues Ana P. C., Manning Gerard, Dillin Andrew. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 2012;489(7415):263–268. 

Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5:5659. 

Winkler S, Faragher J, Franz P, Imsic M, Jones R. Glucoraphanin and flavonoid levels remain stable during simulated transport and marketing of broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol. 2007;43(1):89–94. 

Xu C, Li CY-T, Kong A-NT. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28(3):249–268. 

Yang H, Liu F, Li Y, Yu B. Reconstructing biosynthetic pathway of the plant-derived cancer chemopreventive-precursor glucoraphanin in Escherichia coli. ACS Synth Biol. 2017;7(1):121–131. 

Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Galderisi U. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age. 2012;34(2):281–293. 

Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89(6):2399–2403

Zhang H, Davies KJ, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88:314–336. 

Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A, Jiang C, Chen Y, An L. Beneficial effects of sulforaphane treatment in Alzheimer’s disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci. 2017;9:121. 

Zhao Z, Liao G, Zhou Q, Lv D, Holthfer H, Zou H (2016) Sulforaphane attenuates contrast-induced nephropathy in rats via Nrf2/HO-1 pathway. Oxidative Med Cell 

Zhao F, Zhang J, Chang N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur J Pharmacol. 2018;824:1–10. 

Zhou Q, Chen B, Wang X, Wu L, Yang Y, Cheng X, … Sun X (2016) Sulforaphane protects against rotenone-induced neurotoxicity in vivo: involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep 6:32206 

Zhou L, Zhang H, Davies KJ, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. 

Zhu M, Zhang Y, Cooper S, Sikorski E, Rohwer J, Bowden GT. Phase II enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism. Mol Carcinog. 2004;41(3):179–186. 

https://www.carnomed.sk/produkty/sulforafan-extra.htm

https://www.carnomed.sk/produkty/sulforafan-extra-xl-pure-gold-edition.htm 


27.03.2023


Čítaj Viac: Detoxikácia~ Imunita~ Životný štýl~ Sulforafan EXTRA

 

 

Video kanál
Videá o našich produktoch
Video

Pre tých ktorým sa nechce čítať náš blog,
je tu sekcia video

Pozerať


Napíšte nám

Chcete sa s nami podeliť o skúsenosti s našimi produktami alebo máte pre nás zaujímavú tému pre náš blog?

Odoslaním tohto formulára súhlasíte so spracovaním Vašich osobných údajov za účelom vybavenia Vašej požiadavky. Viac info.